SCIENTIFIC HIGHLIGHTS

Tuning the Cell Uptake and Subcellular Distribution in BODIPY-carboranyl Dyads: An Experimental and Theoretical Study
04 August 2020

A set of BODIPY-carboranyl dyads synthesized by a Sonogashira cross-coupling reaction, where different C-substituted ortho- and meta-carboranyl fragments have been linked to a BODIPY fluorophore is described.

Chemical, photophysical and physicochemical analyses are presented, including NMR and SXRD experiments, optical absorption/emission studies and log P measurements. These studies, supported by DFT computations (M06-2X/6-31G**) provide an explanation to the largely divergent cell income that these fluorescent carboranyl-based fluorophores display, for which a structural or physicochemical explanation remains elusive. By studying the cell uptake efficiency and subcellular localization for our set of dyads on living HeLa cells, we tracked the origins of these differences to significant variations in their static dipole moments and partition coefficients, which tune their ability to interact with lipophilic microenvironments in cells. Remarkably, m-carboranyl-BODIPY derivatives with a higher lipophilicity are much better internalised by cells than their homologous with o-carborane, suggesting that m-isomers are potentially better theranostic agents for in vitro bioimaging and boron carriers for BNCT.

Tuning the Cell Uptake and Subcellular Distribution in BODIPY-carboranyl Dyads: An Experimental and Theoretical Study
Pablo Labra-Vázquez, Ricardo Flores-Cruz, Aylin Galindo-Hernández, Justo Cabrera-González, Cristian Guzmán-Cedillo, Arturo Jiménez-Sánchez, Pascal G Lacroix, Rosa Santillan, Norberto Farfán, Rosario Núñez. [published online ahead of print, 2020 Jun 30]
Chemistry. 2020;10.1002/chem.202002600.
DOI:10.1002/chem.202002600

Tuning the Cell Uptake and Subcellular Distribution in BODIPY-carboranyl Dyads: An Experimental and Theoretical Study

 

 
Hits: 630
Bioactive materials for therapy and diagnosis

Tuning the Cell Uptake and Subcellular Distribution in BODIPY-carboranyl Dyads: An Experimental and Theoretical Study



Also at ICMAB

  • Recombinant Human Epidermal Growth Factor/Quatsome Nanoconjugates: A Robust Topical Delivery System for Complex Wound Healing

    Information
    22 June 2021 49 hit(s) Biomaterials
    A multitude of microparticles and nanoparticles is developed to improve the delivery of different small drugs and large biomolecules, which are subject to several hindering biological barriers that limit their optimal biodistribution and therapeutic effects. Here, a soft, reliable, and scalable method based on compressed CO2 is reported for obtaining nanoconjugates of recombinant human epidermal growth factor and nanovesicles called quatsomes, where the latter consists of cholesterol and cetyltrimethylammonium bromide.These nanoconjugates exhibit appropriate values of the major critical quality attributes of colloidal nanomedicines, such as controlled and narrow nanoscopic particle size distribution (which play important roles in determining their stability), drug loading, drug release, drug protection, targeting ability, and bioactivity.
  • In vivo soft tissue reinforcement with bacterial nanocellulose

    Information
    11 May 2021 293 hit(s) Biomaterials
    The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation.
  • Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration

    Information
    13 April 2021 405 hit(s) Biomaterials
    Limbal stem cells (LSCs) are already used in cell‐based treatments for ocular surface disorders. Clinical translation of LSCs‐based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.
  • Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment

    Information
    02 April 2021 436 hit(s) Biomaterials
    Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients.An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells.
  • Radiolabeled Cobaltabis(dicarbollide) Anion–Graphene Oxide Nanocomposites for In Vivo Bioimaging and Boron Delivery

    Information
    23 March 2021 430 hit(s) Biomaterials
    A carbon-based hybrid nanocomposite, which consists of monoiodinated boron-cluster derivatives covalently attached to graphene oxide, is hereby introduced. This GO-I-COSAN has been synthesized using a novel boron-rich cobaltabis(dicarbollide) precursor with one iodide group attached to one of the boron atoms of the cluster (I-COSAN) and designed to be subsequently labeled with radioactive 124I for its use in positron emission tomography (PET).

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.