SCIENTIFIC HIGHLIGHTS

Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration
13 April 2021
Limbal stem cells (LSCs) are already used in cell‐based treatments for ocular surface disorders. Clinical translation of LSCs‐based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.
Bacterial nanocellulose (BNC) is an appealing, yet unexplored, candidate for this application because of its biocompatibility, animal‐free origin and mechanical stability. Here, BNC as a vehicle for human embryonic stem cells‐derived LSC (hESC‐LSC) are investigated. To enhance cell‐biomaterial interactions, a plasma activation followed by a Collagen IV and Laminin coating of the BNC substrates is implemented. This surface functionalization with human extracellular matrix proteins greatly improved the attachment and survival of hESC‐LSC without compromising the flexible, robust and semi‐transparent nature of the BNC. The surface characteristics of the BNC substrates are described and a preliminary ex vivo test in simulated transplantation scenarios is provided. Importantly, it is shown that hESC‐LSC retain their self‐renewal and stemness characteristics up to 21 days on BNC substrates. These results open the door for future research on hESC‐LSC/BNC constructs to treat severe ocular surface pathologies.
Hits: 270
Bioactive materials for therapy and diagnosis

Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration


Irene Anton‐Sales, Laura Koivusalo, Heli Skottman, Anna Laromaine, Anna Roig

Small 2021, 2003937
DOI: https://doi.org/10.1002/smll.202003937

Also at ICMAB

  • Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment

    Information
    02 April 2021 279 hit(s) Biomaterials
    Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients.An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells.
  • Radiolabeled Cobaltabis(dicarbollide) Anion–Graphene Oxide Nanocomposites for In Vivo Bioimaging and Boron Delivery

    Information
    23 March 2021 299 hit(s) Biomaterials
    A carbon-based hybrid nanocomposite, which consists of monoiodinated boron-cluster derivatives covalently attached to graphene oxide, is hereby introduced. This GO-I-COSAN has been synthesized using a novel boron-rich cobaltabis(dicarbollide) precursor with one iodide group attached to one of the boron atoms of the cluster (I-COSAN) and designed to be subsequently labeled with radioactive 124I for its use in positron emission tomography (PET).
  • Characterization of crystalline forms of gaxilose, a diagnostic drug

    Information
    17 March 2021 281 hit(s) Biomaterials
    Lactose intolerance is a pathology caused by lactase enzyme deficiency, usually produced in the intestinal cells provoking symptoms as abdominal pain, bloating, diarrhea, gas and nausea. Gaxilose, 4-O-β-D galactopyranosyl-d-xylose, is used as a diagnostic drug for a non-invasive method for hypolactasia diagnosis.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.