SCIENTIFIC HIGHLIGHTS

Closo-Carboranyl- and Metallacarboranyl [1,2,3]triazolyl-Decorated Lapatinib-Scaffold for Cancer Therapy Combining Tyrosine Kinase Inhibition and Boron Neutron Capture Therapy
24 July 2020

One of the driving forces of carcinogenesis in humans is the aberrant activation of receptors; consequently, one of the most promising mechanisms for cancer treatment is receptor inhibition by chemotherapy.

Although a variety of cancers are initially susceptible to chemotherapy, they eventually develop multi-drug resistance. Anti-tumor agents overcoming resistance and acting through two or more ways offer greater therapeutic benefits over single-mechanism entities. In this study, we report on a new family of bifunctional compounds that, offering the possibility of dual action (drug + radiotherapy combinations), may result in significant clinical benefits. This new family of compounds combines two fragments: the drug fragment is a lapatinib group, which inhibits the tyrosine kinase receptor activity, and an icosahedral boron cluster used as agents for neutron capture therapy (BNCT).

The developed compounds were evaluated in vitro against different tyrosine kinase receptors (TKRs)-expressing tumoral cells, and in vitro–BNCT experiments were performed for two of the most promising hybrids, 19 and 22. We identified hybrid 19 with excellent selectivity to inhibit cell proliferation and ability to induce necrosis/apoptosis of glioblastoma U87 MG cell line. Furthermore, derivative 22, bearing a water-solubility-enhancing moiety, showed moderate inhibition of cell proliferation in both U87 MG and colorectal HT-29 cell lines. Additionally, the HT-29 cells accumulated adequate levels of boron after hybrids 19 and 22 incubations rendering, and after neutron irradiation, higher BNCT-effects than BPA. The attractive profile of developed hybrids makes them interesting agents for combined therapy. 

This publication belongs to the collection of articles invited in the issue on "Biology of Boron Neutron Capture Therapy (BNCT)".

According to Clara Viñas, "the article describes the synthesis, purification, and complete characterization of a family of bifunctional compounds for use in the treatment of brain cancer (malignant glioblastoma) and colon cancer. The compounds have been studied in vitro with glioblastoma tumor cells (U87 MG) and colon cancer (HT-29) and BNCT experiments have been performed in vitro. The results are very good, showing the possibility of its use for the dual treatment of brain cancer".

Closo-Carboranyl- and Metallacarboranyl [1,2,3]triazolyl-Decorated Lapatinib-Scaffold for Cancer Therapy Combining Tyrosine Kinase Inhibition and Boron Neutron Capture Therapy
Marcos Couto*, Catalina Alamón, María Fernanda García, Mariángeles Kovacs, Emiliano Trias, Susana Nievas, Emiliano Pozzi, Paula Curotto, Silvia Thorp, María Alejandra Dagrosa, Francesc Teixidor, Clara Viñas,* and Hugo Cerecetto*
Cells 2020(6), 1408. 
DOI: 10.3390/cells9061408

Closo-Carboranyl- and Metallacarboranyl [1,2,3]triazolyl-Decorated Lapatinib-Scaffold for Cancer Therapy Combining Tyrosine Kinase Inhibition and Boron Neutron Capture Therapy

 
Hits: 709
Bioactive materials for therapy and diagnosis

Closo-Carboranyl- and Metallacarboranyl [1,2,3]triazolyl-Decorated Lapatinib-Scaffold for Cancer Therapy Combining Tyrosine Kinase Inhibition and Boron Neutron Capture Therapy



Also at ICMAB

  • In vivo soft tissue reinforcement with bacterial nanocellulose

    Information
    11 May 2021 273 hit(s) Biomaterials
    The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation.
  • Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration

    Information
    13 April 2021 386 hit(s) Biomaterials
    Limbal stem cells (LSCs) are already used in cell‐based treatments for ocular surface disorders. Clinical translation of LSCs‐based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.
  • Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment

    Information
    02 April 2021 416 hit(s) Biomaterials
    Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients.An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells.
  • Radiolabeled Cobaltabis(dicarbollide) Anion–Graphene Oxide Nanocomposites for In Vivo Bioimaging and Boron Delivery

    Information
    23 March 2021 412 hit(s) Biomaterials
    A carbon-based hybrid nanocomposite, which consists of monoiodinated boron-cluster derivatives covalently attached to graphene oxide, is hereby introduced. This GO-I-COSAN has been synthesized using a novel boron-rich cobaltabis(dicarbollide) precursor with one iodide group attached to one of the boron atoms of the cluster (I-COSAN) and designed to be subsequently labeled with radioactive 124I for its use in positron emission tomography (PET).
  • Characterization of crystalline forms of gaxilose, a diagnostic drug

    Information
    17 March 2021 374 hit(s) Biomaterials
    Lactose intolerance is a pathology caused by lactase enzyme deficiency, usually produced in the intestinal cells provoking symptoms as abdominal pain, bloating, diarrhea, gas and nausea. Gaxilose, 4-O-β-D galactopyranosyl-d-xylose, is used as a diagnostic drug for a non-invasive method for hypolactasia diagnosis.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.