SCIENTIFIC HIGHLIGHTS

Battery Materials Design Essentials
21 May 2021
The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
Indeed, knowledge of the structure and dynamics of matter at different length scales has enabled replacing serendipity and Edisonian trial-and-error approaches with intention and rational materials engineering, and this has accelerated progresses in a wide range of technologies which are now crucial for our daily lives but could not even be imagined a century ago.
One such example is Li-ion batteries, which was granted the Nobel Prize in Chemistry 2019 to J.B. Goodenough, M.S. Whittingham, and A. Yoshino as it enabled, in the words of the Nobel Committee, “the creation of a rechargeable world”.(1) This technology is now expanding from the portable electronics realm to transportation(2) and even stationary grid applications.
Given the crucial relevance of all these fields of use, it seems evident that as a society we should not rely on a unique technology, neither from a sustainability nor from a geopolitical and social perspective. Despite Li-ion batteries being in themselves not a single technology but a family of technologies for which several materials have been developed ad hoc,(3) the diversification of concepts/chemistries is currently a target for battery researchers worldwide, both in academia and industry (see ref (4) and references in that issue). While the quest for ever increasing energy densities has for long been the main driving force behind progress in battery technology, additional factors are now considered such as cost and sustainability. The latter comprises not only low environmental footprint in terms of toxicity and energy/water consumption but also the avoidance of critical materials.
The aim of this viewpoint is to present in a nutshell a summary of practical considerations in research for new battery materials and concepts targeting nonspecialists in the field. Indeed, cross-fertilization from other research domains is, as always in science, precious, but a number of aspects need to be taken into account when entering battery research to make the best of experiments/developments and avoid biased experiment interpretations.
Hits: 505
Sustainable energy conversion & storage systems

Battery Materials Design Essentials


M. Rosa Palacin*

Acc. Mater. Res. 2021, XXXX, XXX, XXX-XXX
Publication Date:April 13, 2021
https://doi.org/10.1021/accountsmr.1c00026

Also at ICMAB

  • Observation of second sound in a rapidly varying temperature field in Ge

    Information
    06 July 2021 242 hit(s) Energy
    Second sound is known as the thermal transport regime where heat is carried by temperature waves. Its experimental observation was previously restricted to a small number of materials, usually in rather narrow temperature windows. We show that it is possible to overcome these limitations by driving the system with a rapidly varying temperature field. High-frequency second sound is demonstrated in bulk natural Ge between 7 K and room temperature by studying the phase lag of the thermal response under a harmonic high-frequency external thermal excitation and addressing the relaxation time and the propagation velocity of the heat waves. These results provide a route to investigate the potential of wave-like heat transport in almost any material, opening opportunities to control heat through its oscillatory nature.
  • Tuning the architectures and luminescence properties of Cu(I) compounds of phenyl and carboranyl pyrazoles: the impact of 2D versus 3D aromatic moieties in the ligand backbone

    Information
    25 June 2021 244 hit(s) Energy
    Incorporation of one or two o-carborane moieties at the backbone of the pyrazole ring was achieved by lithiation and nucleophilic addition onto the corresponding 3,5-dimethyl-1-(2-toluene-p-sulfonyloxyethyl)pyrazole. Two monosubstituted carboranyl pyrazoles (L2 and L3) and one disubstituted carboranyl pyrazole (L4) were synthesized and fully characterized. All new compounds, and the corresponding monosubstituted phenylderivative (L1) behave as N-type ligands upon coordination with CuI to afford different polynuclear Cu(I) compounds 1–4. Compounds 1–4 were fully characterized and their molecular structures were determined by X-ray diffraction. It is noteworthy that whereas the pyrazolylphenyl ligand L1, without o-carborane, provides a 1D coordination polymer (1), ligands containing carborane, L2–L3, affords 0D coordination compounds 2 and 3, and disubstituted carboranyl pyrazole ligand L4 gives rise to a 3D coordination polymer.
  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    Information
    11 June 2021 350 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    Information
    08 June 2021 327 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    Information
    01 June 2021 373 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.