SCIENTIFIC HIGHLIGHTS

23 December 2017

José Luis García-Muñoz, Arnau Romaguera, Francois Fauth, Josep Nogués, and Martí Gich*. Chem. Mater., 2017, 29 (22), pp 9705–9713. DOI: 10.1021/acs.chemmater.7b03417

Iron oxides are among the most abundant materials on Earth, and yet there are some of their basic properties which are still not well-established. Here, we present temperature-dependent magnetic, X-ray, and neutron diffraction measurements refuting the current belief that the magnetic ordering temperature of ε-Fe2O3 is ∼500 K, i.e., well below that of other iron oxides such as hematite, magnetite, or maghemite. Upon heating from room temperature, the ε-Fe2O3nanoparticles’ saturation magnetization undergoes a monotonic decrease while the coercivity and remanence sharply drop, virtually vanishing around ∼500 K. However, above that temperature the hysteresis loops present a nonlinear response with finite coercivity, making evident signs of ferrimagnetic order up to temperatures as high as 850 K (TN1). The neutron diffraction study confirms the presence of ferrimagnetic order well above 500 K with Pna'21' magnetic symmetry, but only involving two of the four Fe3+ sublattices which are ordered below TN2 ≈ 480 K, and with a reduced net ferromagnetic component, that vanishes at above 850 K. The results unambiguously show the presence of a high-temperature magnetic phase in ε-Fe2O3 with a critical temperature of TN1 ∼ 850 K. Importantly, this temperature is similar to the Curie point in other iron oxides, indicating comparable magnetic coupling strengths. The presence of diverse magnetic phases is further supported by the nonmonotonic evolution of the thermal expansion. The existence of a high-temperature ferrimagnetic phase in ε-Fe2O3 may open the door to further expand the working range of this multifunctional iron oxide.

 

 

Hits: 3254
Oxides for new-generation electronics

Unveiling a New High-Temperature Ordered Magnetic Phase in ε-Fe2O3



Also at ICMAB

  • Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices

    Information
    25 May 2021 207 hit(s) Oxides
    About ten years after ferroelectricity was first reported in doped HfO2 polycrystalline films, there is tremendous interest in this material and ferroelectric oxides are once again in the spotlight of the memories industry. Great efforts are being made to understand and control ferroelectric properties. Epitaxial films, which have fewer defects and a more controlled microstructure than polycrystalline films, can be very useful for this purpose. Epitaxial films of ferroelectric HfO2 have been much less investigated, but after the first report in 2015 significant progress has been achieved.
  • Structure and phase transitions in A-site ordered RBaMn2O6(R=Pr,Nd) -perovskites with a polar ground state

    Information
    14 May 2021 225 hit(s) Oxides
    We report here a structural study of RBaMn2O6 (R=La, Pr, and Nd) compounds by means of synchrotron radiation x-ray powder diffraction and Raman spectroscopy. The three compounds are A-site ordered perovskites adopting the prototypical tetragonal structure at high temperature. A ferromagnetic transition is observed in the LaBaMn2O6 sample and the lattice parameters undergo anisotropic changes at TC related to the orientation of the magnetic moments.
  • Tuning the tilting of the spiral plane by Mn doping in YBaCuFeO5 multiferroic

    Information
    23 April 2021 303 hit(s) Oxides
    The layered perovskite YBaCuFeO5 (YBCFO) is considered one of the best candidates to high-temperature chiral multiferroics with strong magnetoelectric coupling. In RBaCuFeO5 perovskites (R: rare-earth or Y) A-site cations are fully ordered whereas their magnetic properties strongly depend on the preparation process. They exhibit partial cationic disorder at the B-site that generates a magnetic spiral stabilized through directionally assisted long range coupling between canted locally frustrated spins.
  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 346 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    Information
    06 April 2021 456 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.