SCIENTIFIC HIGHLIGHTS

12 January 2018

R. Ruiz-Rosas, I. Fuentes, C. Viñas, F. Teixidor, E. Morallóna and D. Cazorla-Amorós*. Sustainable Energy Fuels, 2018, DOI:10.1039/C7SE00503B

Sustainable energy and fuels TOC

Expanding the operating voltage of aqueous-based electrolytes by using neutral electrolytes and advanced cell designs is a promising strategy for the development of greener and safer supercapacitors. However, solvent decomposition and the oxidation of carbon electrodes are issues that still need to be resolved. Herein, we propose a novel protection strategy for stabilizing aqueous electrolytes at high voltages by using metallacarboranes with tuned redox potentials specifically selected for matching those of the electrolyte decomposition. Such metallacarboranes are strongly adsorbed in the micropores of conventional activated carbons without compromising their capacitance or their power capabilities. As a proof of concept, supercapacitors with optimized electrode weight ratios in 0.5 M Na2SO4 were constructed using a highly stable commercial activated carbon with the aim of operating them at 2.2 V. While this device malfunctioned after several hundreds of cycles, the addition of small amounts of the Na[Co(C2B9Cl2H9)2] metallacarborane (redox pair at −0.98 V vs. Ag/AgCl) dramatically increased its durability. The supercapacitor prepared using 0.15 mmol g−1 of Na[Co(C2B9Cl2H9)2] retained 80% of its original capacitance and an energy density of 10.67 W h kg−1 at 1 kW kg−1 after 5000 cycles at 2.2 V. This strategy has the potential to be extended to different electrolytes, enabling the development of more durable supercapacitors that operate at voltages close to those of organic electrolytes while using safer and greener aqueous electrolytes.

 

 

Hits: 3254
Sustainable energy conversion & storage systems

Tailored metallacarboranes as mediators for boosting the stability of carbon-based aqueous supercapacitors



Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    Information
    11 June 2021 229 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    Information
    08 June 2021 218 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    Information
    01 June 2021 258 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    Information
    21 May 2021 378 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    Information
    04 May 2021 305 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.