SCIENTIFIC HIGHLIGHTS

14 February 2013

http://dx.doi.org/10.1016/j.jcat.2012.12.016

Calcium diglyceroxide has been reported as a very active phase in the transesterification of triglycerides with methanol for biodiesel production. This work reports on the determination of the crystal structure of Ca diglyceroxide by Patterson-based direct methods from synchrotron X-ray powder diffraction (XRD) data in combination with characterisation by Differential Thermal Analysis-Thermogravimetry (DTA-TG), Scanning Electron Microscopy (SEM) and X-ray Photoelectron and Fourier Transform-Infrared spectroscopies (XPS and FT-IR). Its crystal structure is formed by molecular tetramers held together by a complex H-bond network. Both the XRD structural determination and the O1s XPS core level indicate the presence of a basic non-protonated O anion at the surface of Ca diglyceroxide. Along with the presence of surface lipophilic CHxunits, this O anion may be the origin of this molecule’s high activity relative to CaO.

 


Graphical abstract

Two relevant surface features of Calcium diglyceroxide have been disclosed by surface characterisation and determination of its crystal structure: the presence of basic unsaturated O anion and the presence of lipophilic CHx units. Both characteristics can favour two key steps of the reaction mechanism: methoxide formation and nucleophilic attack of the latter to the carbonyl groups of triglyceride molecule.

 

.....

Hits: 8041
Sustainable energy conversion & storage systems

Structural and surface study of calcium glyceroxide, an active phase for biodiesel production under heterogeneous catalysis



Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    Information
    11 June 2021 229 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    Information
    08 June 2021 218 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    Information
    01 June 2021 258 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    Information
    21 May 2021 378 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    Information
    04 May 2021 305 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.