SCIENTIFIC HIGHLIGHTS

Siesta: Recent developments and applications
07 July 2020

A review of the present status, recent enhancements, and applicability of the Siesta program is presented. Since its debut in the mid-1990s, Siesta’s flexibility, efficiency, and free distribution have given advanced materials simulation capabilities to many groups worldwide.

The core methodological scheme of Siesta combines finite-support pseudo-atomic orbitals as basis sets, norm-conserving pseudopotentials, and a real-space grid for the representation of charge density and potentials and the computation of their associated matrix elements. Here, we describe the more recent implementations on top of that core scheme, which include full spin–orbit interaction, non-repeated and multiple-contact ballistic electron transport, density functional theory (DFT)+U and hybrid functionals, time-dependent DFT, novel reduced-scaling solvers, density-functional perturbation theory, efficient van der Waals non-local density functionals, and enhanced molecular-dynamics options. In addition, a substantial effort has been made in enhancing interoperability and interfacing with other codes and utilities, such as wannier90 and the second-principles modeling it can be used for, an AiiDA plugin for workflow automatization, interface to Lua for steering Siesta runs, and various post-processing utilities. Siesta has also been engaged in the Electronic Structure Library effort from its inception, which has allowed the sharing of various low-level libraries, as well as data standards and support for them, particularly the PSeudopotential Markup Language definition and library for transferable pseudopotentials, and the interface to the ELectronic Structure Infrastructure library of solvers. Code sharing is made easier by the new open-source licensing model of the program. This review also presents examples of application of the capabilities of the code, as well as a view of on-going and future developments.

Siesta: Recent developments and applications
Alberto García, Nick Papior, Arsalan Akhtar, Emilio Artacho, Volker Blum, Emanuele Bosoni, Pedro Brandimarte, Mads Brandbyge, J. I. Cerdá, Fabiano Corsett, Ramón Cuadrado, Vladimir Dikan, Jaime Ferrer, Julian Gale, Pablo García-Fernández, V. M. García-Suárez, Sandra García, Georg Huhs, Sergio Illera, Richard Korytár, Peter Koval, Irina Lebedeva, Lin Lin, Pablo López-Tarifa, Sara G. Mayo, Stephan Mohr, Pablo Ordejón, Andrei Postnikov, Yann Pouillon, Miguel Pruneda, Roberto Robles, Daniel Sánchez-Portal, Jose M. Soler, Rafi Ullah, Victor Wen-zhe Yu, and Javier Junquera
J. Chem. Phys. 152, 204108 (2020)
DOI: https://doi.org/10.1063/5.0005077

Siesta: Recent developments and applications editors-pick

 
Hits: 785
Oxides for new-generation electronics

Siesta: Recent developments and applications



Also at ICMAB

  • Stabilization of the Ferroelectric Phase in Epitaxial Hf1–xZrxO2 Enabling Coexistence of Ferroelectric and Enhanced Piezoelectric Properties

    Information
    18 June 2021 228 hit(s) Oxides
    Systematic studies on polycrystalline Hf1–xZrxO2 films with varying Zr contents show that HfO2 films are paraelectric (monoclinic). If the Zr content is increased, films become ferroelectric (orthorhombic) and then antiferroelectric (tetragonal). HfO2 shows very good insulating properties and it is used in metal-oxide-semiconductor field-effect devices, while ZrO2 shows good piezoelectric properties, but it is antiferroelectric. In between, Hf0.5Zr0.5O2 shows good ferroelectric properties at the expense of poorer insulating and piezoelectric properties than HfO2 and ZrO2, respectively.
  • Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices

    Information
    25 May 2021 243 hit(s) Oxides
    About ten years after ferroelectricity was first reported in doped HfO2 polycrystalline films, there is tremendous interest in this material and ferroelectric oxides are once again in the spotlight of the memories industry. Great efforts are being made to understand and control ferroelectric properties. Epitaxial films, which have fewer defects and a more controlled microstructure than polycrystalline films, can be very useful for this purpose. Epitaxial films of ferroelectric HfO2 have been much less investigated, but after the first report in 2015 significant progress has been achieved.
  • Structure and phase transitions in A-site ordered RBaMn2O6(R=Pr,Nd) -perovskites with a polar ground state

    Information
    14 May 2021 258 hit(s) Oxides
    We report here a structural study of RBaMn2O6 (R=La, Pr, and Nd) compounds by means of synchrotron radiation x-ray powder diffraction and Raman spectroscopy. The three compounds are A-site ordered perovskites adopting the prototypical tetragonal structure at high temperature. A ferromagnetic transition is observed in the LaBaMn2O6 sample and the lattice parameters undergo anisotropic changes at TC related to the orientation of the magnetic moments.
  • Tuning the tilting of the spiral plane by Mn doping in YBaCuFeO5 multiferroic

    Information
    23 April 2021 328 hit(s) Oxides
    The layered perovskite YBaCuFeO5 (YBCFO) is considered one of the best candidates to high-temperature chiral multiferroics with strong magnetoelectric coupling. In RBaCuFeO5 perovskites (R: rare-earth or Y) A-site cations are fully ordered whereas their magnetic properties strongly depend on the preparation process. They exhibit partial cationic disorder at the B-site that generates a magnetic spiral stabilized through directionally assisted long range coupling between canted locally frustrated spins.
  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 370 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.