10 December 2014

jp-2014-09067u 0010

J. Phys. Chem. C, 2014, 118 (48), pp 27911–27919

Pure titanium dioxide (TiO2) and graphene oxide (GO) as well as TiO2/GO composite structures were grown by matrix-assisted pulsed laser evaporation (MAPLE) in a controlled oxygen atmosphere. The MAPLE target dispersions were prepared using distilled water as solvent matrix, with TiO2 nanoparticles (NPs) and GO platelets serving as host materials. Two laser sources, a free-running IR Er:YAG (λ = 2940 nm, τfwhm ≅ 350 μs, ν = 10 Hz) and a UV KrF* excimer (λ = 248 nm, τfwhm ≅ 25 ns, ν = 10 Hz) laser, were used for the transfer and immobilization experiments by infrared (IR)- and ultraviolet (UV)-MAPLE, respectively. The potential physical mechanisms implied in both the IR- and UV-MAPLE processes are discussed, based on numerical simulations of temperature evolution of the distilled water matrix, TiO2 NPs, and GO platelets. Our results demonstrate the effectiveness of IR- and UV-MAPLE processes for the immobilization of nanoentities onto solid substrates. During IR-MAPLE, the laser radiation is primarily absorbed by the water matrix. The materials transferred to the substrate surface resemble the initial starting materials used for the preparation of the MAPLE target dispersions. Conversely, during UV-MAPLE the UV radiation is mainly absorbed by the nanoentities dispersed in the water matrix. The structural transformation of the nanoentities deposited by UV-MAPLE is significant as compared to the starting materials.

Hits: 6040
Sustainable energy conversion & storage systems

Resonant Infrared and Ultraviolet Matrix-Assisted Pulsed Laser Evaporation of Titanium Oxide/Graphene Oxide Composites: A Comparative Study

Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    11 June 2021 229 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    08 June 2021 218 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    01 June 2021 258 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    21 May 2021 378 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    04 May 2021 305 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.