Organotin Dyes Bearing Anionic Boron Clusters as Cell‐Staining Fluorescent Probes
20 April 2018

Within the cell nucleus, in the nucleoli, ribosomal RNAs are synthesized and participate in several biological processes. To better understand nucleoli‐related processes, their visualization is often required, for which specific markers are needed. Herein, we report the design of novel fluorescent organotin compounds derived from 4‐hydroxy‐N′‐((2‐hydroxynaphthalen‐1‐yl)methylene)benzohydrazide and their cytoplasm and nucleoli staining of B16F10 cells in vitro. Tin compounds bearing an aliphatic carbon chain (‐C12H25) and an electron‐donating group (‐OH) were prepared, and the latter could be derivatized to bear the boron cluster anions [B12H12]2− and [3,3′‐Co(1,2‐C2B9H11)2](COSAN). All of the conjugates have been fully characterized and their luminescence properties have been assessed. In general, they show good quantum yields in solution (24–49 %), those for the COSAN derivatives being lower. Remarkably, the linking of [B12H12]2− and COSAN to the complexes made them more soluble, without being detrimental to their luminescence properties. Living B16F10 cells were treated with all of the compounds to determine their fluorescence staining properties; the compounds bearing the aliphatic chain showed a reduced staining capacity due to the formation of aggregates. Notably, the complexes bearing different boron clusters showed different staining effects; those bearing [B12H12]2− showed extraordinary staining of the nucleoli and cytoplasm, whereas those bearing COSAN were only detected in the cytoplasm. The remarkable fluorescence staining properties shown by these organotin compounds make them excellent candidates for fluorescence bioimaging in vitro.

Hits: 2951
Bioactive materials for therapy and diagnosis

Organotin Dyes Bearing Anionic Boron Clusters as Cell‐Staining Fluorescent Probes

Also at ICMAB

  • In vivo soft tissue reinforcement with bacterial nanocellulose

    11 May 2021 273 hit(s) Biomaterials
    The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation.
  • Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration

    13 April 2021 386 hit(s) Biomaterials
    Limbal stem cells (LSCs) are already used in cell‐based treatments for ocular surface disorders. Clinical translation of LSCs‐based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.
  • Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment

    02 April 2021 416 hit(s) Biomaterials
    Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients.An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells.
  • Radiolabeled Cobaltabis(dicarbollide) Anion–Graphene Oxide Nanocomposites for In Vivo Bioimaging and Boron Delivery

    23 March 2021 412 hit(s) Biomaterials
    A carbon-based hybrid nanocomposite, which consists of monoiodinated boron-cluster derivatives covalently attached to graphene oxide, is hereby introduced. This GO-I-COSAN has been synthesized using a novel boron-rich cobaltabis(dicarbollide) precursor with one iodide group attached to one of the boron atoms of the cluster (I-COSAN) and designed to be subsequently labeled with radioactive 124I for its use in positron emission tomography (PET).
  • Characterization of crystalline forms of gaxilose, a diagnostic drug

    17 March 2021 374 hit(s) Biomaterials
    Lactose intolerance is a pathology caused by lactase enzyme deficiency, usually produced in the intestinal cells provoking symptoms as abdominal pain, bloating, diarrhea, gas and nausea. Gaxilose, 4-O-β-D galactopyranosyl-d-xylose, is used as a diagnostic drug for a non-invasive method for hypolactasia diagnosis.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.