SCIENTIFIC HIGHLIGHTS

Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte‐Gated Organic Field‐Effect Transistor under Operation
25 December 2020
Probing nanoscale electrical properties of organic semiconducting materials at the interface with an electrolyte solution under externally applied voltages is key in the field of organic bioelectronics. It is demonstrated that the conductivity and interfacial capacitance of the active channel of an electrolyte‐gated organic field‐effect transistor (EGOFET) under operation can be probed at the nanoscale using scanning dielectric microscopy in force detection mode in liquid environment.
Local electrostatic force versus gate voltage transfer characteristics are obtained on the device and correlated with the global current–voltage transfer characteristics of the EGOFET. Nanoscale maps of the conductivity of the semiconducting channel show the dependence of the channel conductivity on the gate voltage and its variation along the channel due to the space charge limited conduction. The maps reveal very small electrical heterogeneities, which correspond to local interfacial capacitance variations due to an ultrathin non‐uniform insulating layer resulting from a phase separation in the organic semiconducting blend. Present results offer insights into the transduction mechanism at the organic semiconductor/electrolyte interfaces at scales down to ≈100 nm, which can bring substantial optimization of organic electronic devices for bioelectronic applications such as electrical recording on excitable cells or label‐free biosensing.
Hits: 605
Tuneable and low cost molecular electronics

Nanoscale Mapping of the Conductivity and Interfacial Capacitance of an Electrolyte‐Gated Organic Field‐Effect Transistor under Operation


Adrica Kyndiah, Martí Checa, Francesca Leonardi, Ruben Millan‐Solsona, Martina Di Muzio, Shubham Tanwar, Laura Fumagalli, Marta Mas‐Torrent, Gabriel Gomila

Adv. Funct. Mater. 2020, 2008032. 
DOI: https://doi.org/10.1002/adfm.202008032

Also at ICMAB

  • Advances in dynamic AFM: From nanoscale energy dissipation to material properties in the nanoscale

    Information
    04 June 2021 219 hit(s) Molecular
    Since the inception of the atomic force microscope (AFM), dynamic methods (dynamic atomic force microscopy) have been very fruitful by establishing methods to quantify dissipative and conservative forces in the nanoscale and by providing a means to apply gentle forces to the samples with high resolution. Here, we discuss developments that cover over a decade of our work on energy dissipation, phase contrast, and the extraction of relevant material properties from observables.
  • Conducting chiral nickel(ii) bis(dithiolene) complexes: structural and electron transport modulation with the charge and the number of stereogenic centres

    Information
    18 May 2021 246 hit(s) Molecular
    Nickel(II) bis(dithiolene) complexes can provide crystalline conducting materials either in their monoanionic or neutral forms. Here we show that the use of chiral dithiolene ligands with one or two stereogenic centres, together with variation of the counter-ion in the anionic complexes, represents a powerful strategy to modulate the conducting properties of such molecular materials.The chiral ligands 5-methyl-5,6-dihydro-1,4-dithiin-2,3-dithiolate (me-dddt) and 5,6-dimethyl-5,6-dihydro-1,4-dithiin-2,3-dithiolate (dm-dddt) have been generated from the thione precursors 1 and 2 which have been structurally and chiroptically characterized.
  • Interaction of Luminescent Defects in Carbon Nanotubes with Covalently Attached Stable Organic Radicals

    Information
    07 May 2021 269 hit(s) Molecular
    The functionalization of single-walled carbon nanotubes (SWCNTs) with luminescent sp3 defects has greatly improved their performance in applications such as quantum light sources and bioimaging. Here, we report the covalent functionalization of purified semiconducting SWCNTs with stable organic radicals (perchlorotriphenylmethyl, PTM) carrying a net spin.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.