SCIENTIFIC HIGHLIGHTS

Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage
05 March 2021
Novel composite materials are being investigated for improving the energy storage performance of electrochemical capacitors. For this goal, synergistic effects via the combination of diverse types of materials are crucial. In this work, electrodes composed of reduced graphene oxide, multiwall carbon nanotubes, as well as cerium and manganese oxides were fabricated through reactive inverse matrix-assisted pulsed laser evaporation (RIMAPLE).
UV-pulsed laser irradiation of frozen aqueous dispersions containing graphene oxide sheets, carbon nanotubes, and ceria nanoentities, besides manganese acetate precursor, led to the simultaneous chemical transformation and co-deposition of hybrid electrodes onto flexible metallic substrates via photothermal and photochemical processes. Thorough morphological and compositional studies of the electrodes demonstrated the laser-induced reduction of graphene oxide, besides the crystallization of a mixture of cerium and manganese oxide nanostructures decorating the carbon nanoentities during the deposition process. Electrochemical analyses revealed a remarkable improvement of performance with the combination of electrochemical double layer in the porous nanocarbon framework with pseudocapacitance from the oxide nanostructures, obtaining excellent volumetric capacitances of up to 140 F cm−3 at 10 mV s−1 with the combination of all four materials. The attained results are the best ones yet published regarding RIMAPLE of hybrid nanocarbon-based electrodes with micrometric thickness. Finally, symmetric electrochemical capacitors were fabricated using aqueous electrolyte, revealing excellent stability upon tens of thousands of charge–discharge cycles.
Hits: 390
Sustainable energy conversion & storage systems

Laser fabrication of hybrid electrodes composed of nanocarbons mixed with cerium and manganese oxides for supercapacitive energy storage


Pablo García Lebière, * Ángel Pérez del Pino, Guillem Domènech Domingo, Constantin Logofatu, Immaculada Martínez-Rovira, Ibraheem Yousef and Enikö György

J. Mater. Chem. A, 2021, Advance Article
https://doi.org/10.1039/D0TA06756C

Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    Information
    11 June 2021 201 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    Information
    08 June 2021 201 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    Information
    01 June 2021 243 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    Information
    21 May 2021 363 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    Information
    04 May 2021 303 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.