Integrin-Assisted T-Cell Activation on Nanostructured Hydrogels
03 October 2017

Judith Guasch*, Christine A. Muth, Jennifer Diemer, Hossein Riahinezhad, and Joachim P. Spatz. Nano Lett., DOI: 10.1021/acs.nanolett.7b02636

Adoptive cell therapy (ACT) has shown very promising results as treatment for cancer in a few clinical trials, such as the complete remissions of otherwise terminal leukemia patients. Nevertheless, the introduction of ACT into clinics requires overcoming not only medical but also technical challenges, such as the ex vivo expansion of large amounts of specific T-cells. Nanostructured surfaces represent a novel T-cell stimulation technique that enables us to fine-tune the density and orientation of activating molecules presented to the cells. In this work, we studied the influence of integrin-mediated cell-adhesion on T-cell activation, proliferation, and differentiation using nanostructured surfaces, which provide a well-defined system at the nanoscale compared with standard cultures. Specifically, we synthesized a polymeric polyethylene glycol (PEG) hydrogel cross-linked with two fibronectin-derived peptides, cyclic Arg-Gly-Asp (cRGD) and cyclic Leu-Asp-Val (cLDV), that are known to activate different integrins. Moreover, the hydrogels were decorated with a quasi-hexagonal array of gold nanoparticles (AuNPs) functionalized with the activating antibody CD3 to initiate T-cell activation. Both cLDV and cRGD hydrogels showed higher T-cell activation (CD69 expression and IL-2 secretion) than nonfunctionalized PEG hydrogels. However, only the cRGD hydrogels clearly supported proliferation giving a higher proportion of cells with memory (CD4+CD45RO+) than naı̈ve (CD4+CD45RA+) phenotypes when interparticle distances smaller than 150 nm were used. Thus, T-cell proliferation can be enhanced by the activation of integrins through the RGD sequence.

Hits: 3078
Bioactive materials for therapy and diagnosis

Integrin-Assisted T-Cell Activation on Nanostructured Hydrogels

Also at ICMAB

  • In vivo soft tissue reinforcement with bacterial nanocellulose

    11 May 2021 273 hit(s) Biomaterials
    The use of surgical meshes to reinforce damaged internal soft tissues has been instrumental for successful hernia surgery; a highly prevalent condition affecting yearly more than 20 million patients worldwide. Intraperitoneal adhesions between meshes and viscera are one of the most threatening complications, often implying reoperation or side effects such as chronic pain and bowel perforation.
  • Limbal Stem Cells on Bacterial Nanocellulose Carriers for Ocular Surface Regeneration

    13 April 2021 386 hit(s) Biomaterials
    Limbal stem cells (LSCs) are already used in cell‐based treatments for ocular surface disorders. Clinical translation of LSCs‐based therapies critically depends on the successful delivery, survival, and retention of these therapeutic cells to the desired region. Such a major bottleneck could be overcome by using an appropriate carrier to provide anchoring sites and structural support to LSC culture and transplantation.
  • Impact of Chemical Composition on the Nanostructure and Biological Activity of α-Galactosidase-Loaded Nanovesicles for Fabry Disease Treatment

    02 April 2021 416 hit(s) Biomaterials
    Fabry disease is a rare lysosomal storage disorder characterized by a deficiency of α-galactosidase A (GLA), a lysosomal hydrolase. The enzyme replacement therapy administering naked GLA shows several drawbacks including poor biodistribution, limited efficacy, and relatively high immunogenicity in Fabry patients.An attractive strategy to overcome these problems is the use of nanocarriers for encapsulating the enzyme. Nanoliposomes functionalized with RGD peptide have already emerged as a good platform to protect and deliver GLA to endothelial cells.
  • Radiolabeled Cobaltabis(dicarbollide) Anion–Graphene Oxide Nanocomposites for In Vivo Bioimaging and Boron Delivery

    23 March 2021 412 hit(s) Biomaterials
    A carbon-based hybrid nanocomposite, which consists of monoiodinated boron-cluster derivatives covalently attached to graphene oxide, is hereby introduced. This GO-I-COSAN has been synthesized using a novel boron-rich cobaltabis(dicarbollide) precursor with one iodide group attached to one of the boron atoms of the cluster (I-COSAN) and designed to be subsequently labeled with radioactive 124I for its use in positron emission tomography (PET).
  • Characterization of crystalline forms of gaxilose, a diagnostic drug

    17 March 2021 374 hit(s) Biomaterials
    Lactose intolerance is a pathology caused by lactase enzyme deficiency, usually produced in the intestinal cells provoking symptoms as abdominal pain, bloating, diarrhea, gas and nausea. Gaxilose, 4-O-β-D galactopyranosyl-d-xylose, is used as a diagnostic drug for a non-invasive method for hypolactasia diagnosis.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.