Impact of the Ink Formulation and Coating Speed on the Polymorphism and Morphology of a Solution‐Sheared Thin Film of a Blended Organic Semiconductor
20 December 2019
Adrián Tamayo, Sergi Riera‐Galindo, Andrew O. F. Jones, Roland Resel, Marta Mas‐Torrent. Adv. Mater. Interfaces 2019, 1900950.

Despite the recent encouraging advances in achieving high‐performance organic field effect transistors employing meniscus‐guided processing techniques compatible with roll‐to‐roll manufacturing, there is still a very limited knowledge about how all the coating parameters influence the thin film electrical characteristics. Here, the polymorphism and morphology of thin films of the organic semiconductor dibenzo‐tetrathiafulvalene blended with polystyrene deposited by bar‐assisted meniscus shearing (BAMS) are investigated in‐depth by modifying the coating speed and ink formulation. It is found that all these parameters significantly affect the crystallization process and the resulting thin film characteristics. Remarkably, pure polymorphs with optimized field‐effect mobilities can be achieved only within a narrow range of conditions. The precise control of the film morphology and crystal structure is of paramount importance in order to move toward real applications achieving high device‐to‐device reproducibility.

Impact of the Ink Formulation and Coating Speed on the Polymorphism and Morphology of a Solution‐Sheared Thin Film of a Blended Organic Semiconductor

Hits: 1100
Tuneable and low cost molecular electronics

Impact of the Ink Formulation and Coating Speed on the Polymorphism and Morphology of a Solution‐Sheared Thin Film of a Blended Organic Semiconductor

Also at ICMAB

  • From high quality packing to disordered nucleation or phase separation in donor/acceptor interfaces: ClAlPc-C60 on Au(111)

    03 September 2021 183 hit(s) Molecular
    The dramatic consequences that the orientation adopted by the molecular dipoles, in diverse arrays of chloroaluminum phthalocyanine (ClAlPc) on Au(111), have on the ulterior adsorption and growth of C60 are explored by means of an all scanning probe microscopy approach. The unidirectional downwards organization of the molecular dipoles at the first layer reduces charge transfer from the metal to C60. Imbalance between attractive and repulsive interactions of the fullerenes are crucial for their ordered supramolecular aggregation.
  • Synthesis of 2D Porous Crystalline Materials in Simulated Microgravity

    27 August 2021 243 hit(s) Molecular
    To date, crystallization studies conducted in space laboratories, which are prohibitively costly and unsuitable to most research laboratories, have shown the valuable effects of microgravity during crystal growth and morphogenesis. Herein, an easy and highly efficient method is shown to achieve space-like experimentation conditions on Earth employing custom-made microfluidic devices to fabricate 2D porous crystalline molecular frameworks.
  • Rich Polymorphism of Layered NbS3

    20 August 2021 262 hit(s) Molecular
    Layered group V transition-metal trichalcogenides are paradigmatic low-dimensional materials providing an ever increasing series of unusual properties. They are all based on the same basic building units, one-dimensional MX3 (M = Nb, Ta; X = S, Se) trigonal-prismatic chains that condense into layers, but their electronic structures exhibit significant differences leading to a broad spectrum of transport properties, ranging from metals with one, two, or three charge density wave instabilities to semimetals with potential topological properties or semiconductors.
  • Red light-emitting Carborane-BODIPY dyes: Synthesis and properties of visible-light tuned fluorophores with enhanced boron content

    17 August 2021 281 hit(s) Molecular
    A small library of 2,6- and 3,5-distyrenyl-substituted carborane-BODIPY dyes was efficiently synthesized by means of a Pd-catalyzed Heck coupling reaction. Styrenyl-carborane derivatives were exploited as molecular tools to insert two carborane clusters into the fluorophore core and to extend the π-conjugation of the final molecule in a single synthetic step.
  • A Trapezoidal Octacyanoquinoid Acceptor Forms Solution and Surface Products by Antiparallel Shape Fitting with Conformational Dipole Momentum Switch

    06 August 2021 297 hit(s) Molecular
    A new compound formed by two antiparallelly disposed tetracyano thienoquinoidal units has been synthesized and studied by electrochemistry and several spectroscopic techniques. Its self-assembly on a Au(111) surface has been investigated by scanning tunneling microscopy.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.