Impact of Nanomorphology on Surface Doping of Organic Semiconductors: The Pentacene–C60F48 Interface
28 July 2020

Establishing the rather complex correlation between the structure and the charge transfer in organic–organic heterostructures is of utmost importance for organic electronics and requires spatially resolved structural, chemical, and electronic details.

Insight into this issue is provided here by combining atomic force microscopy, Kelvin probe force microscopy, photoemission electron microscopy, and low-energy electron microscopy for investigating a case study. We select the interface formed by pentacene (PEN), benchmark among the donor organic semiconductors, and a p-type dopant from the family of fluorinated fullerenes. As for Buckminsterfullerene (C60), the growth of its fluorinated derivative C60F48 is influenced by the thickness and crystallinity of the PEN buffer layer, but the behavior is markedly different. We provide a microscopic description of the C60F48/PEN interface formation and analyze the consequences in the electronic properties of the final heterostructure. For just one single layer of PEN, a laterally complete but noncompact C60F48/PEN interface is created, importantly affecting the surface work function. Nonetheless, from the very beginning of the second layer formation, the presence of epitaxial and nonepitaxial PEN domains dramatically influences the growth dynamics and extremely well packed two-dimensional C60F48 islands develop. Insightful elemental maps of the C60F48/PEN surface spatially resolve the nonuniform distribution of the dopant molecules, which leads to a heterogeneous work function landscape.

Impact of Nanomorphology on Surface Doping of Organic Semiconductors: The Pentacene–C60F48 Interface
Francesco Silvestri, Mauricio J. Prieto, Adara Babuji, Liviu C. Tănase, Lucas de Souza Caldas, Olga Solomeshch, Thomas SchmidtThomas Schmidt, Carmen Ocal*, and Esther Barrena*. 
ACS Appl. Mater. Interfaces 2020, 12, 22, 25444–25452.
DOI: 10.1021/acsami.0c05583

Impact of Nanomorphology on Surface Doping of Organic Semiconductors: The Pentacene–C60F48 Interface

Hits: 905
Tuneable and low cost molecular electronics

Impact of Nanomorphology on Surface Doping of Organic Semiconductors: The Pentacene–C60F48 Interface

Also at ICMAB

  • From high quality packing to disordered nucleation or phase separation in donor/acceptor interfaces: ClAlPc-C60 on Au(111)

    03 September 2021 183 hit(s) Molecular
    The dramatic consequences that the orientation adopted by the molecular dipoles, in diverse arrays of chloroaluminum phthalocyanine (ClAlPc) on Au(111), have on the ulterior adsorption and growth of C60 are explored by means of an all scanning probe microscopy approach. The unidirectional downwards organization of the molecular dipoles at the first layer reduces charge transfer from the metal to C60. Imbalance between attractive and repulsive interactions of the fullerenes are crucial for their ordered supramolecular aggregation.
  • Synthesis of 2D Porous Crystalline Materials in Simulated Microgravity

    27 August 2021 244 hit(s) Molecular
    To date, crystallization studies conducted in space laboratories, which are prohibitively costly and unsuitable to most research laboratories, have shown the valuable effects of microgravity during crystal growth and morphogenesis. Herein, an easy and highly efficient method is shown to achieve space-like experimentation conditions on Earth employing custom-made microfluidic devices to fabricate 2D porous crystalline molecular frameworks.
  • Rich Polymorphism of Layered NbS3

    20 August 2021 262 hit(s) Molecular
    Layered group V transition-metal trichalcogenides are paradigmatic low-dimensional materials providing an ever increasing series of unusual properties. They are all based on the same basic building units, one-dimensional MX3 (M = Nb, Ta; X = S, Se) trigonal-prismatic chains that condense into layers, but their electronic structures exhibit significant differences leading to a broad spectrum of transport properties, ranging from metals with one, two, or three charge density wave instabilities to semimetals with potential topological properties or semiconductors.
  • Red light-emitting Carborane-BODIPY dyes: Synthesis and properties of visible-light tuned fluorophores with enhanced boron content

    17 August 2021 281 hit(s) Molecular
    A small library of 2,6- and 3,5-distyrenyl-substituted carborane-BODIPY dyes was efficiently synthesized by means of a Pd-catalyzed Heck coupling reaction. Styrenyl-carborane derivatives were exploited as molecular tools to insert two carborane clusters into the fluorophore core and to extend the π-conjugation of the final molecule in a single synthetic step.
  • A Trapezoidal Octacyanoquinoid Acceptor Forms Solution and Surface Products by Antiparallel Shape Fitting with Conformational Dipole Momentum Switch

    06 August 2021 297 hit(s) Molecular
    A new compound formed by two antiparallelly disposed tetracyano thienoquinoidal units has been synthesized and studied by electrochemistry and several spectroscopic techniques. Its self-assembly on a Au(111) surface has been investigated by scanning tunneling microscopy.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.