SCIENTIFIC HIGHLIGHTS

Engineering Polar Oxynitrides: Hexagonal Perovskite BaWON2
11 December 2020

Non‐centrosymmetric polar compounds have important technological properties. Reported perovskite oxynitrides show centrosymmetric structures, and for some of them high permittivities have been observed and ascribed to local dipoles induced by partial order of nitride and oxide.

Reported here is the first hexagonal perovskite oxynitride BaWON2, which shows a polar 6H polytype. Synchrotron X‐ray and neutron powder diffraction, and annular bright‐field in scanning transmission electron microscopy indicate that it crystalizes in the non‐centrosymmetric space group P63mc, with a total order of nitride and oxide at two distinct coordination environments in cubic and hexagonal packed BaX3 layers. A synergetic second‐order Jahn–Teller effect, supported by first principle calculations, anion order, and electrostatic repulsions between W6+ cations, induce large distortions at two inequivalent face‐sharing octahedra that lead to long‐range ordered dipoles and spontaneous polarization along the c axis. The new oxynitride is a semiconductor with a band gap of 1.1 eV and a large permittivity.

Hits: 567
Oxides for new-generation electronics

Engineering Polar Oxynitrides: Hexagonal Perovskite BaWON2


Dr. Judith Oró‐Solé, Dr. Ignasi Fina, Dr. Carlos Frontera, Dr. Jaume Gàzquez, Dr. Clemens Ritter, Marina Cunquero, Dr. Pablo Loza‐Alvarez, Dr. Sergio Conejeros, Prof. Pere Alemany, Prof. Enric Canadell, Prof. Josep Fontcuberta, Prof. Amparo Fuertes. 

Angew. Chem. Int. Ed. 2020, 59, 18395 – 18399.
DOI: https://doi.org/10.1002/ange.202006519

Also at ICMAB

  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 174 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    Information
    06 April 2021 255 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    Information
    30 March 2021 217 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    Information
    26 March 2021 255 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.
  • Metallic Diluted Dimerization in VO2 Tweeds

    Information
    19 March 2021 245 hit(s) Oxides
    Though first order transitions are thought to be abrupt, materials find cunning ways to smooth the jump. Here we show that VO2 chooses making beautiful tapestries at the atomic scale. To see how, and how they affect its intriguing metal-insulator transition, continue reading:

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.