Electric and Mechanical Switching of Ferroelectric and Resistive States in Semiconducting BaTiO3–δ Films on Silicon
30 November 2017

Andrés Gómez, José Manuel Vila-Fungueiriño, Rahma Moalla, Guillaume Saint-Girons, Jaume Gázquez, María Varela, Romain Bachelet, Martí Gich, Francisco Rivadulla, Adrián Carretero-Genevrier. SMALL, Volume 13, Issue 39
October 18, 2017. DOI: 10.1002/smll.201701614

Cover G mez et al 2017 SmallMaterials that can couple electrical and mechanical properties constitute a key element of smart actuators, energy harvesters, or many sensing devices. Within this class, functional oxides display specific mesoscale responses which often result in great sensitivity to small external stimuli. Here, a novel combination of molecular beam epitaxy and a water-based chemical-solution method is used for the design of mechanically controlled multilevel device integrated on silicon. In particular, the possibility of adding extra functionalities to a ferroelectric oxide heterostructure by n-doping and nanostructuring a BaTiO3 thin film on Si(001) is explored. It is found that the ferroelectric polarization can be reversed, and resistive switching can be measured, upon a mechanical load in epitaxial BaTiO3−δ/La0.7Sr0.3MnO3/SrTiO3/Si columnar nanostructures. A flexoelectric effect is found, stemming from substantial strain gradients that can be created with moderate loads. Simultaneously, mechanical effects on the local conductivity can be used to modulate a nonvolatile resistive state of the BaTiO3−δ heterostructure. As a result, three different configurations of the system become accessible on top of the usual voltage reversal of polarization and resistive states.



Hits: 4756
Oxides for new-generation electronics

Electric and Mechanical Switching of Ferroelectric and Resistive States in Semiconducting BaTiO3–δ Films on Silicon

Also at ICMAB

  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    09 April 2021 174 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.
  • Silicon nanowires as acetone-adsorptive media for diabetes diagnosis

    06 April 2021 255 hit(s) Oxides
    Early detection of diabetes, a worldwide health issue, is key for its successful treatment. Acetone is a marker of diabetes, and efficient, non-invasive detection can be achieved with the use of nanotechnology. In this paper we investigate the effect of acetone adsorption on the electronic properties of silicon nanowires (SiNWs) by means of density functional theory.
  • Soft‐Chemistry‐Assisted On‐Chip Integration of Nanostructured α‐Quartz Microelectromechanical System

    30 March 2021 217 hit(s) Oxides
    The development of advanced piezoelectric α‐quartz microelectromechanical system (MEMS) for sensing and precise frequency control applications requires the nanostructuration and on‐chip integration of this material on silicon material.
  • Critical Effect of Bottom Electrode on Ferroelectricity of Epitaxial Hf0.5Zr0.5O2 Thin Films

    26 March 2021 255 hit(s) Oxides
    Epitaxial orthorhombic Hf0.5Zr0.5O2 (HZO) films on La0.67Sr0.33MnO3 (LSMO) electrodes show robust ferroelectricity, with high polarization, endurance and retention. However, no similar results have been achieved using other perovskite electrodes so far. Here, LSMO and other perovskite electrodes are compared.
  • Metallic Diluted Dimerization in VO2 Tweeds

    19 March 2021 245 hit(s) Oxides
    Though first order transitions are thought to be abrupt, materials find cunning ways to smooth the jump. Here we show that VO2 chooses making beautiful tapestries at the atomic scale. To see how, and how they affect its intriguing metal-insulator transition, continue reading:

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.