SCIENTIFIC HIGHLIGHTS

Efficient Exploration of the Composition Space in Ternary Organic Solar Cells by Combining High‐Throughput Material Libraries and Hyperspectral Imaging
14 February 2020

Albert Harillo‐Baños, Xabier Rodríguez‐Martínez, Mariano Campoy‐Quiles. Adv. Energy Mater.202010, 1902417. 

https://doi.org/10.1002/aenm.201902417

Organic solar cells based on ternary active layers can lead to higher power conversion efficiencies than corresponding binaries, and improved stability. The parameter space for optimization of multicomponent systems is considerably more complex than that of binaries, due to both, a larger number of parameters (e.g., two relative compositions rather than one) and intricate morphology–property correlations. Most experimental reports to date reasonably limit themselves to a relatively narrow subset of compositions (e.g., the 1:1 donor/s:acceptor/s trajectory). This work advances a methodology that allows exploration of a large fraction of the ternary phase space employing only a few (<10) samples. Each sample is produced by a designed sequential deposition of the constituent inks, and results in compositions gradients with ≈5000 points/sample that cover about 15%–25% of the phase space. These effective ternary libraries are then colocally imaged by a combination of photovoltaic techniques (laser and white light photocurrent maps) and spectroscopic techniques (Raman, photoluminescence, absorption). The generality of the methodology is demonstrated by investigating three ternary systems, namely PBDB‐T:ITIC:PC70BM, PTB7‐Th:ITIC:PC70BM, and P3HT:O‐IDFBR:O‐IDTBR. Complex performance‐structure landscapes through the ternary diagram as well as the emergence of several performance maxima are discovered.

Efficient Exploration of the Composition Space in Ternary Organic Solar Cells by Combining High‐Throughput Material Libraries and Hyperspectral Imaging

 
Hits: 677
Sustainable energy conversion & storage systems

Efficient Exploration of the Composition Space in Ternary Organic Solar Cells by Combining High‐Throughput Material Libraries and Hyperspectral Imaging



Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    Information
    11 June 2021 229 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    Information
    08 June 2021 218 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    Information
    01 June 2021 258 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    Information
    21 May 2021 378 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    Information
    04 May 2021 305 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.