Control of Polymorphism and Morphology in Solution Sheared Organic Field-Effect Transistors
19 June 2017

Sergi Galindo, Adrián Tamayo, Francesca Leonardi, Marta Mas-Torrent. Adv. Funct. Materials. DOI: 10.1002/adfm.201700526

During the last decades, small molecule organic semiconductors have been successfully used as active layer in organic field-effect transistors (OFETs). Despite the high mobility achieved so far with organic molecules, in order to progress in the field it is crucial to find techniques to process them from solution. The device reproducibility is one of the principal weak points of organic electronics for further commercialization. To achieve a high device-to-device reproducibility it is essential to control the morphology and polymorphism of the active layer for OFET application. In this work, the preparation of thin films is reported based on blends of the organic semiconductor dibenzo-tetrathiafulvalene (DB-TTF) and polystyrene by a solution shearing technique compatible with upscaling. Here, it is demonstrated that varying the deposition parameters (i.e., speed and temperature) or the solution formulation (i.e., semiconductor/binder polymer ratio) is possible to control the film morphology and semiconductor polymorphism and, hence, the different intermolecular interactions. It is demonstrated that the control of the thermodynamics and kinetics of the crystallization process is key for the device performance optimization. Further, this is the first time that DB-TTF thin films of the α-polymorph are reported.

Hits: 3988
Sustainable energy conversion & storage systems

Control of Polymorphism and Morphology in Solution Sheared Organic Field-Effect Transistors

Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    11 June 2021 229 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    08 June 2021 218 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    01 June 2021 258 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    21 May 2021 378 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    04 May 2021 305 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.