Bottom-up approach for the preparation of hybrid nanosheets based on coordination polymers made of metal–diethyloxaloacetate complexes linked by 4,4′-bipyridine
30 August 2017

In this work, three synthetic approaches were examined to obtain one dimensional (1D) coordination polymers with the formula [M(deox)2(bpy)] (M = Co, Cu, Mn, Ni, Zn) (deox = diethyl oxaloacetate; bpy = 4,4′-bipyridine). These compounds precipitated as nanosheets arranged in different morphologies as a function of the medium used for the synthesis. Precursor [M(deox)2(H2O)x] (x = 1 for Cu, x = 2 for the other metals) molecular complexes were characterized by powder XRD. Besides, the 1H-NMR spectrum of the diamagnetic Zn(II) complex was measured, and the crystal structure of the Cu complex was elucidated to clarify the coordination mode of the deox ligand. These molecular complexes were used as the building blocks to prepare 1D coordination polymers, using 4,4-bipyridine as the organic linker. The first crystallization strategy involved the reaction between [M(deox)2(H2O)x] and bpy in methanol or ethanol. The second approach involved the use of the same reactants in supercritical CO2 (scCO2) and ethanol as a co-solvent (2% v/v). The third route required the previous preparation of [M(deox)2(tbpy)2nH2O adducts (tbpy = 4-tert-butylpyridine; n = 1 for Co, n = 2 for Cu and Zn, n= 1.5 for Mn and x = 0 for Ni) as scCO2 soluble precursors. The high solubility of these derivatives allowed the synthesis of the target coordination polymers in pure scCO2i.e. avoiding the use of a co-solvent. All of the samples obtained from each strategy had a laminar morphology with nanometric thickness. The samples prepared using scCO2, independently of the use or not of a co-solvent, showed the formation of 15–60 nm thick flakes arranged in a desert rose type conformation. Those obtained using conventional liquid solvents had multiple, closely packed sheets of 40–80 nm thickness, with lateral dimensions in the order of tens of micrometers.


Hits: 3101
Sustainable energy conversion & storage systems

Bottom-up approach for the preparation of hybrid nanosheets based on coordination polymers made of metal–diethyloxaloacetate complexes linked by 4,4′-bipyridine

Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    11 June 2021 229 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    08 June 2021 218 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    01 June 2021 258 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    21 May 2021 378 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    04 May 2021 305 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.