SCIENTIFIC HIGHLIGHTS

ALBA synchrotron enlightens the way sodium-oxygen batteries discharge
07 June 2017

The search for the next-generation batteries has recently focused on rechargeable metal-oxygen batteries, considered very attractive as room-temperature devices with high theoretical energy densities (comparable to gasoline) for application in electrical vehicles. These batteries form oxides during the discharging process, which then –ideally- decompose into the metal ions and oxygen when charging. Lithium-oxygen systems have been largely studied; in these batteries, lithium peroxide (Li2O2) is formed when discharging. Recent studies found that this compound partially reacts with the electrolyte forming solid products that are difficult to remove and hinder its decomposition. As a consequence, the porous electrode remains clogged and the battery capacity fades within a few cycles.

Sodium-oxygen batteries, first reported in 2012, can be an interesting alternative given the earth-abundancy of sodium, and especially because they often show a more attractive cycle life. Most authors report that no sodium peroxide (Na2O2) is formed during the discharge process; instead, sodium superoxide (NaO2) is formed. This compound forms in only one-electron transfer step and is believed to decompose more easily upon charging.

Researchers have now analyzed the discharge products of these batteries by energy-dependent transmission X-ray microscopy at the ALBA synchrotron. This technique allows distinguishing at the nanoscale between different regions of the deposits formed, according to the quantity and the chemical state of the oxygen present.

These researchers report in the journal Nano Energy that both products (sodium peroxide and superoxide) are actually present in these deposits and decompose almost simultaneously while charging. In addition to these two oxides, a complex structure of several layers formed by electrolyte decomposition products is observed at their surface.

Fortunately, all the products are eventually removed at the end of the charging process. However, even if the complete deposit decomposition may explain the superior cycle life compared to lithium-oxygen batteries, these findings indicate that further improvements in the electrolyte formulation are required for a long-term stability.

The study is a result of the collaboration between the ALBA synchrotron, and researchers from various centers, including ICMAB, Universidad del País Vasco and CIC EnergiGUNE from Spain; and Institut Charles Gerhardt Montpellier/UMR-CNRS and Réseau sur le Stockage Electrochimique de l’Energie from France.

 

 


Reference
Imanol Landa-Medrano, Andrea Sorrentino, Lorenzo Stievano, Idoia Ruiz de Larramendi, Eva Pereiro, Luis Lezama, Teófilo Rojo, Dino Tonti. Architecture of Na-O2 battery deposits revealed by transmission X-ray microscopy.

Nano Energy, Volume 37, July 2017, Pages 224–231.


Figure
Left: concentration profiles of the different compounds along the discharge product (cubic-shaped) of a sodium-oxygen battery.
Right: maps of oxygen distribution. The scale represents the fraction of oxygen in each of the main chemical forms found in the cubic-shaped deposits.


 

Hits: 3862
Sustainable energy conversion & storage systems

ALBA synchrotron enlightens the way sodium-oxygen batteries discharge



Also at ICMAB

  • Accelerating organic solar cell material's discovery: high-throughput screening and big data

    Information
    11 June 2021 229 hit(s) Energy
    The discovery of novel high-performing materials such as non-fullerene acceptors and low band gap donor polymers underlines the steady increase of record efficiencies in organic solar cells witnessed during the past years. Nowadays, the resulting catalogue of organic photovoltaic materials is becoming unaffordably vast to be evaluated following classical experimentation methodologies: their requirements in terms of human workforce time and resources are prohibitively high, which slows momentum to the evolution of the organic photovoltaic technology.
  • Boost of Charge Storage Performance of Graphene Nanowall Electrodes by Laser-Induced Crystallization of Metal Oxide Nanostructures

    Information
    08 June 2021 218 hit(s) Energy
    Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed.
  • Unveiling Planar Defects in Hexagonal Group IV Materials

    Information
    01 June 2021 258 hit(s) Energy
    Recently synthesized hexagonal group IV materials are a promising platform to realize efficient light emission that is closely integrated with electronics. A high crystal quality is essential to assess the intrinsic electronic and optical properties of these materials unaffected by structural defects. Here, we identify a previously unknown partial planar defect in materials with a type I3 basal stacking fault and investigate its structural and electronic properties.
  • Battery Materials Design Essentials

    Information
    21 May 2021 378 hit(s) Energy
    The advanced materials industry is one of the leading technology sectors worldwide. The development of such materials is at the core of the technological innovations and has been possible in the last century thanks to the transition from “observational” science to “control” science.
  • Study of nanostructured ultra-refractory Tantalum-Hafnium-Carbide electrodes with wide electrochemical stability window

    Information
    04 May 2021 305 hit(s) Energy
    Transition metal carbides have gathered increasing attention in energy and electrochemistry applications, mainly due to their high structural and physicochemical properties. Their high refractory properties have made them an ideal candidate coating technology and more recently their electronic similarity to the platinum group has expanded their use to energy and catalysis. Here, we demonstrate that the nanostructuring and stoichiometry control of the highest melting point material to this date (Ta-Hf-C) results in outstanding electrochemical stability.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.