SCIENTIFIC HIGHLIGHTS

A surface confined yttrium(III) bis-phthalocyaninato complex: a colourful switch controlled by electrons
02 July 2016

I. Alcón, M. Gonidec, M. R. Ajayakumar, M. Mas-Torrent* and J. Veciana*.  Chem. Sci., 2016, Advance Article DOI: 10.1039/C6SC00443A

In the last 20 years huge efforts have been devoted to studying and developing organic molecules for electronic applications. Molecules can be, in principle, synthesized in mass production at a relatively low cost and, by chemical design, their properties can be tuned. In order to fabricate devices, molecules are typically supported on inorganic substrates (mainly metals or metal-oxides), facilitating their manipulation and the possibility to direct the application of external stimuli on them. One common route is the fabrication of self-assembled monolayers (SAMs) which is focused on the use of molecules with a specific functional group that spontaneously bonds to the surface.1,2 Electrochemical molecular switches are a particularly appealing class of molecular devices where electroactive molecules are switched reversibly between different redox states triggered by an electrical signal.3 Optical, magnetic, electrical or chemical outputs can be used to read the state of the switch.4–12 Most of the reported examples are based on bi-stable molecules where the two accessible redox states can be visualized as 1's or 0's mimicking the terminology employed in the binary logic system which is the basis of current memory devices. However, it is known that the fabrication of devices with a higher number of states would facilitate the processing of higher memory densities.13,14 Despite this interest, only a few examples based on electroactive SAMs that can present three or more states have been reported to date.13–15 Most of these systems take advantage of the different optical absorption levels that the distinct redox states exhibit at determined wavelengths as the readout mechanism.16–18 Double and triple-decker phthalocyanine lanthanide complexes are potential building blocks for the fabrication of electrochemical switches owing to their rich electrochemistry that allows an easy access to a range of oxidation states centred on the ligands.19–21 Lindsey and Bocian demonstrated with Eu phthalocyanine triple-decker SAMs that four available redox states could be accessed electrochemically.4 In solution and in thin films it is widely known that the reduction and oxidation processes in these materials are accompanied by significant changes in their optical absorption spectra.22–24 This prompted us to explore the possibility to exploit this property as the output of a surface confined switch based on a double-decker phthalocyanine lanthanide complex. In this work, a ternary switchable SAM of a bis-phthalocyaninato–Y(III) complex has been prepared. By the application of a low bias voltage, three redox states have been accessed and clearly identified using optical absorption spectroscopy. Remarkably, each state shows characteristic absorption bands giving complementary colours. The SAMs are revealed to be very robust and stable upon the application of more than 100 switching cycles.

 

Hits: 5942
Oxides for new-generation electronics

A surface confined yttrium(III) bis-phthalocyaninato complex: a colourful switch controlled by electrons



Also at ICMAB

  • Stabilization of the Ferroelectric Phase in Epitaxial Hf1–xZrxO2 Enabling Coexistence of Ferroelectric and Enhanced Piezoelectric Properties

    Information
    18 June 2021 228 hit(s) Oxides
    Systematic studies on polycrystalline Hf1–xZrxO2 films with varying Zr contents show that HfO2 films are paraelectric (monoclinic). If the Zr content is increased, films become ferroelectric (orthorhombic) and then antiferroelectric (tetragonal). HfO2 shows very good insulating properties and it is used in metal-oxide-semiconductor field-effect devices, while ZrO2 shows good piezoelectric properties, but it is antiferroelectric. In between, Hf0.5Zr0.5O2 shows good ferroelectric properties at the expense of poorer insulating and piezoelectric properties than HfO2 and ZrO2, respectively.
  • Epitaxial Ferroelectric HfO2 Films: Growth, Properties, and Devices

    Information
    25 May 2021 243 hit(s) Oxides
    About ten years after ferroelectricity was first reported in doped HfO2 polycrystalline films, there is tremendous interest in this material and ferroelectric oxides are once again in the spotlight of the memories industry. Great efforts are being made to understand and control ferroelectric properties. Epitaxial films, which have fewer defects and a more controlled microstructure than polycrystalline films, can be very useful for this purpose. Epitaxial films of ferroelectric HfO2 have been much less investigated, but after the first report in 2015 significant progress has been achieved.
  • Structure and phase transitions in A-site ordered RBaMn2O6(R=Pr,Nd) -perovskites with a polar ground state

    Information
    14 May 2021 258 hit(s) Oxides
    We report here a structural study of RBaMn2O6 (R=La, Pr, and Nd) compounds by means of synchrotron radiation x-ray powder diffraction and Raman spectroscopy. The three compounds are A-site ordered perovskites adopting the prototypical tetragonal structure at high temperature. A ferromagnetic transition is observed in the LaBaMn2O6 sample and the lattice parameters undergo anisotropic changes at TC related to the orientation of the magnetic moments.
  • Tuning the tilting of the spiral plane by Mn doping in YBaCuFeO5 multiferroic

    Information
    23 April 2021 328 hit(s) Oxides
    The layered perovskite YBaCuFeO5 (YBCFO) is considered one of the best candidates to high-temperature chiral multiferroics with strong magnetoelectric coupling. In RBaCuFeO5 perovskites (R: rare-earth or Y) A-site cations are fully ordered whereas their magnetic properties strongly depend on the preparation process. They exhibit partial cationic disorder at the B-site that generates a magnetic spiral stabilized through directionally assisted long range coupling between canted locally frustrated spins.
  • New Sensitive and Selective Chemical Sensors for Ni2+ and Cu2+ Ions: Insights into the Sensing Mechanism through DFT Methods

    Information
    09 April 2021 370 hit(s) Oxides
    We report the synthesis and theoretical study of two new colorimetric chemosensors with special selectivity and sensitivity to Ni2+ and Cu2+ ions over other metal cations in the CH3CN/H2O solution. Compounds (E)-4-((2-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (A) and (E)-4-((3-nitrophenyl)diazenyl)-N,N-bis(pyridin-2-ylmethyl)aniline (B) exhibited a drastic color change from yellow to colorless, which allows the detection of the mentioned metal cations through different techniques.

INSTITUT DE CIÈNCIA DE MATERIALS DE BARCELONA, Copyright © 2020 ICMAB-CSIC | Privacy Policy | This email address is being protected from spambots. You need JavaScript enabled to view it.